Code: IT3T2

II B.Tech - I Semester-Regular/Supplementary Examinations November 2017

CLASSIC DATA STRUCTURES (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A

Answer all the questions. All questions carry equal marks $11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Differentiate between linear search and binary search.
b) Show that $10 n^{2}+4 n+2=O\left(n^{2}\right)$.
c) What are the advantages of linked list representation over array representation.
d) Draw a picture to depict the conceptual representation of an empty doubly linked circular list with header node.
e) Write an algorithm to insert an element into circular queue.
f) Design the algorithm for 'IsStackEmpty' function.
g) Differentiate between Pre order and Post order traversals on a binary tree.
h) Describe any two properties of binary trees.
i) Define a graph and provide an example.
j) Define a strongly connected component.
k) Differentiate between a tree and a graph.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Write the algorithm for Insertion Sort and sort the following numbers using Insertion Sort.
$45,34,12,46,27,56,11,87,6,33,28$
b) Write the algorithm for Quick Sort and also analyze the time complexity.
3. a) Write an algorithm for the addition of two polynomials using the linked representation.

8 M
b) Explain the operations on singly linked lists using algorithms.

8 M
4. a) Write an algorithm for infix to postfix conversion. 8 M
b) Discuss about the implementation of stacks using dynamic arrays.
5. a) Describe the search operation on a binary search tree with the help of an algorithm.
b) Write the algorithm for iterative in-order traversal of binary tree.
6. a) Describe the adjacency matrix and adjacency list representation of graphs with the help of an example. 8 M
b) Write the algorithm to perform the depth first search of a given graph and trace out the same for an arbitrary input graph. 8 M

